ON SYMMETRIC ORDERS AND SEPARABLE ALGEBRAS

BY

T. V. FOSSUM(1)

ABSTRACT. Let K be an algebraic number field, and let Λ be an R-order in a separable K-algebra A, where R is a Dedekind domain with quotient field K; let Δ denote the center of Λ . A left Λ -lattice is a finitely generated left Λ -module which is torsion free as an R-module. For left Λ -modules M and N, Ext $\Lambda^{(M)}(M,N)$ is a module over Δ . In this paper we examine ideals of Δ which are the annihilators of K and we compute these ideals explicitly if K is a symmetric K-algebra. For a group algebra, these ideals determine the defect of a block. We then compare these annihilator ideals with another set of ideals of K which are closely related to the homological different of K, and which in a sense measure deviation from separability. Finally we show that, for K to be separable over K, it is necessary and sufficient that K is a symmetric K-algebra, K is separable over K, and the center of each localization of K at the maximal ideals of K maps onto the center of its residue class algebra.

1. Annihilators of Ext. We will adhere to the notation and assumptions in the introduction throughout this paper: That is, Λ is an R-order in a separable K-algebra A. If M and N are left Λ -modules, then $\operatorname{Ext}_{\Lambda}^1(M,N)$ is an $(\operatorname{End}_{\Lambda}(M),\operatorname{End}_{\Lambda}(N))$ -bimodule. The ring homomorphism from Δ into $\operatorname{End}_{\Lambda}(M)$ given by left multiplication makes $\operatorname{Ext}_{\Lambda}^1(M,N)$ into a left Δ -module.

When M is a left Λ -lattice, we may identify M with a subset of $K \otimes_R M$ by the map $m \to 1 \otimes m$, and under this identification we have that $KM = K \otimes_R M$. It is clear that KM is a left A-module, and in this context we may speak of aM for any $a \in A$. It is equally obvious that to each Λ -homomorphism $f: M \to N$ of left Λ -lattices, there is a unique extension $f: KM \to KN$ (which we still denote by f) which is an A-homomorphism. We will use these conventions frequently and without further mention.

Definition. For M a left Λ -lattice, set

$$\operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda}^{1}(M, -)) = \bigcap_{N} \{\operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda}^{1}(M, N))\},$$

where the intersection is over all left Λ -modules N, and where $\operatorname{Ann}_{\Delta}(E) = \{z \in \Delta : zE = 0\}$ for any left Δ -module E. For a central idempotent e of A, define $J_{\Delta}(\Lambda, e) = \bigcap_{eM=M} \{\operatorname{Ann}_{\Delta}(\operatorname{Ext}^{1}_{\Delta}(M, _))\}$, where the intersection

Received by the editors June 28, 1972.

AMS (MOS) subject classifications (1970). Primary 16A16, 16A18, 16A36; Secondary 13B20, 16A26, 16A32, 16A62, 16A64, 18G15, 18H15, 20C10.

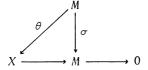
⁽¹⁾ The author wishes to express his appreciation to the University of Illinois for their support during his leave of absence from the University of Utah.

is over all left Λ -lattices M such that eM = M. Set $J_{\Delta}(\Lambda) = J_{\Delta}(\Lambda, 1)$, and $J_{R}(\Lambda, e) = J_{\Delta}(\Lambda, e) \cap R$.

Ideals related to $J_{\Delta}(\Lambda, e)$ have been studied by Jacobinski [5], Roggenkamp [6] and others.

Clearly $J_{\Delta}(\Lambda) = \Delta$ if and only if each left Λ -lattice is projective, that is, if and only if Λ is left hereditary. Let $\Lambda^e = \Lambda \otimes_R \Lambda^0$ be the enveloping algebra of Λ , so that the multiplication map $\epsilon \colon \Lambda^e \to \Lambda$, given by $\epsilon(a \otimes b) = ab$, is a left Λ^e -homomorphism; then ϵ induces the map $\epsilon_* \colon \operatorname{Hom}_{\Lambda^e}(\Lambda, \Lambda^e) \to \Delta$ by $\epsilon_*(f) = \epsilon f(1)$. The image $H_{\Delta}(\Lambda)$ of ϵ_* is an ideal of Δ , called the homological different of Λ (see Auslander and Goldman [1]). Since A is a separable K-algebra, it can be shown that $H_{\Delta}(\Lambda)$ is a nonzero ideal of Δ contained in $J_{\Delta}(\Lambda)$, and which spans the center Z(A) of A over K (see for example [7, Chapter V]). It follows that $\operatorname{Ext}^1(M,N)$ is a torsion R-module for all left Λ -lattices M and all left Λ -modules N.

Let M be a left Λ -module. An endomorphism $\sigma \in \operatorname{End}_{\Lambda}(M)$ is called *projective* if, for every exact sequence $X \to M \to 0$ of left Λ -modules, there exists $\theta \in \operatorname{Hom}_{\Lambda}(M, X)$ such that the diagram



commutes.

Lemma 1.1. Let M be a left Λ -module. Then $\sigma \in \operatorname{End}_{\Lambda}(M)$ is projective if and only if $\sigma \operatorname{Ext}_{\Lambda}^{1}(M, \bot) = 0$.

Proof. See Roggenkamp [6, Lemma 1].

If M is a left Λ -module and if $z \in \Delta$, then it follows from this lemma that $z \operatorname{Ext}^1_{\Lambda}(M, \underline{\ }) = 0$ if and only if the left multiplication endomorphism λ_z of M is projective.

Our first result shows that $J_{\Delta}(\Lambda, e)$ can be computed directly in terms of $J_{\Delta}(\Lambda)$.

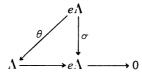
Theorem 1.2. Let e be a central idempotent of A. Then $J_{\Delta}(\Lambda, e) = \{z \in \Delta : ze \in J_{\Delta}(\Lambda)\}.$

Proof. To show the inclusion \supseteq , assume $z \in \Delta$ and $ze \in J_{\Delta}(\Lambda)$. Let M be a left Λ -lattice such that eM = M, so that the left multiplications λ_z and λ_{ze} on M are identical. Now $ze \in J_{\Delta}(\Lambda)$ implies that $\lambda_z = \lambda_{ze}$ is projective, hence $z \in J_{\Delta}(\Lambda, e)$.

For the inclusion \subseteq , fix $z \in J_{\Delta}(\Lambda, e)$. We will show first that $ze \in \Delta$.

Lemma 1.3. Let e be a central idempotent of A. If $\sigma \in \operatorname{End}_{\Lambda}(e\Lambda)$ is projective, then $\sigma(e) \in \Lambda$.

Proof. Let the epimorphism $\Lambda \to e\Lambda$ be given by $a \to ea$. Since σ is projective, there exists $\theta \in \operatorname{Hom}_{\Lambda}(e\Lambda, \Lambda)$ such that the diagram



commutes. In particular, $e\theta(e) = \sigma(e)$. Choose $0 \neq r \in R$ such that $re \in \Lambda$. Then $r\sigma(e) = re\theta(e) = \theta(re) = r\theta(e)$, and since Λ is R-torsion free, $\sigma(e) = \theta(e) \in \Lambda$, as desired.

As a trivial consequence, we deduce the following well-known result about hereditary orders.

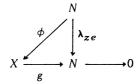
Corollary 1.4. If Λ is hereditary, then Λ contains each central idempotent of A; in particular, Λ is the ring direct product of R-orders in simple K-algebras.

We continue with the proof of Theorem 1.2. Since $z \in J_{\Delta}(\Lambda, e)$, the left multiplication λ_z on $e\Lambda$ is projective. By the lemma, $ze = \lambda_z(e) \in \Lambda$, so in fact $ze \in \Delta$.

Now let N be a left Λ -lattice, and let $X \xrightarrow{g} N \to 0$ be an exact sequence of Λ -modules. We need to show that the left multiplication λ_{ze} is a projective endomorphism of N. The obvious map $N \to eN$ is an epimorphism, so we have the solid part of the diagram

$$(*) \qquad X \xrightarrow{e_R} e_N \xrightarrow{\lambda_Z} 0,$$

where eg is the composite $X \xrightarrow{g} N \to eN$. Clearly $\lambda_z = \lambda_{ze}$ on eN, and e(eN) = eN. Since $z \in J_{\Delta}(\Lambda, e)$, we see that λ_z is a projective endomorphism of eN, so there exists $\theta \in \text{Hom } (eN, X)$ such that the diagram (*) commutes. Now let $\phi = \theta e$ be the composite $N \to eN \xrightarrow{\theta} X$, so that $\phi(n) = \theta(en)$ for all $n \in N$. It is easy to check that the diagram



commutes, using the technique in the proof of Lemma 1.3. It follows that $ze \in J_{\Lambda}(\Lambda)$, which completes the proof.

Corollary 1.5. Let e be a central idempotent of A. Then $eJ_{\Delta}(\Lambda) = eJ_{\Delta}(\Lambda, e)$ $\subseteq J_{\Delta}(\Lambda)$.

Proof. By Theorem 1.2, $eJ_{\Delta}(\Lambda, e) \subseteq J_{\Delta}(\Lambda)$, so $eJ_{\Delta}(\Lambda, e) \subseteq eJ_{\Delta}(\Lambda)$. Clearly $J_{\Delta}(\Lambda) \subseteq J_{\Delta}(\Lambda, e)$. Therefore $eJ_{\Delta}(\Lambda) = eJ_{\Delta}(\Lambda, e) \subseteq J_{\Delta}(\Lambda)$, as desired.

Let e_1 , e_2 be orthogonal central idempotents of A, and set $e=e_1+e_2$. Then e is a central idempotent of A, and it is clear from the definition that $J_{\Delta}(\Lambda,e_i)\supseteq J_{\Delta}(\Lambda,e)$ for i=1,2. If $z\in J_{\Delta}(\Lambda,e_1)\cap J_{\Delta}(\Lambda,e_2)$, then by Theorem 1.2, ze_1 , $ze_2\in J_{\Delta}(\Lambda)$, and so $ze=ze_1+ze_2\in J_{\Delta}(\Lambda)$; therefore $z\in J_{\Delta}(\Lambda,e)$. We have thus proved the following intersection property.

Theorem 1.6. Let e₁, e₂ be orthogonal central idempotents of A. Then

$$J_{\Lambda}(\Lambda, e_1) \cap J_{\Lambda}(\Lambda, e_2) = J_{\Lambda}(\Lambda, e_1 + e_2).$$

A block idempotent of a ring B is a nonzero central idempotent which cannot be expressed as the sum of two nonzero orthogonal central idempotents of B. Since the K-algebra A is semisimple, its block idempotents are in one-to-one correspondence with its simple ring direct factors, and every central idempotent of A is the sum of block idempotents. It follows from the above theorem by induction that if e_1, \dots, e_r are the block idempotents of A, then $J_{\Delta}(\Lambda, e) = \bigcap_{e:e=e} \{J_{\Delta}(\Lambda, e_i)\}$ for any central idempotent e of A.

2. $J_{\Delta}(\Lambda)$ for symmetric algebras. We adhere to the notation and assumptions of §1. In addition, we shall use the following notation through the remainder of the paper:

Let e_1, \dots, r_r be the block idempotents of A. Set $A_j = e_j A$, $K_j = Z(A_j)$, the center of A_j , $n_j = (A_j : K_j)^{1/2}$, $R_j =$ the integral closure of R in K_j , $U_j =$ the reduced trace of A_j over K_j , $T_j =$ the trace of K_j over K_j , for all j such that $1 \le j \le r$.

Let B be a finitely generated S-algebra, where S is a commutative ring. We say the pair (B, ϕ) is a symmetric S-algebra if $\phi: B \to \operatorname{Hom}_S(B, S)$ is an isomorphism as left B^e -modules, where $B^e = B \otimes_S B^0$. We say B is a symmetric algebra if there exists a ϕ such that (B, ϕ) is a symmetric algebra. It is well known that every finitely generated semisimple algebra over a field E is a symmetric E-algebra. Furthermore, if G is a finite group, then the group algebra SG is a

symmetric S-algebra for any commutative ring S.

Let Γ be an R-order (in A) containing Λ , and set $(\Lambda: \Gamma)_{\mathbf{A}} = \{a \in \Lambda: \Gamma a \subset \Lambda\}$. Then $(\Lambda: \Gamma)_{\mathbf{A}}$ is an ideal in Λ , and it is also a left ideal in Γ . Set $(\Lambda: \Gamma)_{\mathbf{A}} = (\Lambda: \Gamma)_{\mathbf{A}} \cap \Delta$.

Proposition 2.1 (Roggenkamp [6]). If Γ is a bereditary R-order containing Λ , then $(\Lambda: \Gamma)_{\Delta} \subseteq J_{\Delta}(\Lambda) \subseteq (\Lambda: \Gamma)_{\Lambda} \Gamma \cap \Delta$. In particular if $(\Lambda: \Gamma)_{\Lambda} \Gamma = (\Lambda: \Gamma)_{\Lambda}$, then $J_{\Delta}(\Lambda) = (\Lambda: \Gamma)_{\Delta}$.

We proceed to compute $(\Lambda: \Gamma)_{\Lambda}$ in case Λ is a symmetric R-algebra and Γ is a maximal R-order containing Λ , following Jacobinski [5].

Let (Λ, ϕ) be a symmetric R-algebra. We can extend ϕ to a left A^e -isomorphism $\phi\colon A\to \operatorname{Hom}_K(A,K)$. Since K has characteristic zero, the reduced trace S_j of A_j over K is nonzero, and it follows from [4, Theorem 1.3] that $\phi^{-1}(S_j)$ is a nonzero element in K_j for each j, $1\leq j\leq r$. Let ρ be the character of the left regular module A^A . One checks that $\rho=\Sigma_j\,n_jS_j$, and it follows that $\Sigma_j\,n_j\,\phi^{-1}(S_j)=\phi^{-1}(\rho)$ is a unit in the center of A. (In [4] we showed that if (a_i) , (b_i) are dual bases for A with respect to ϕ , then $\Sigma_i\,a_i\,b_i=\phi^{-1}(\rho)$.) Since Λ is integral over R, the restriction of ρ to Λ maps Λ into R, and so $\phi^{-1}(\rho)$ belongs to the center of Λ .

Definition. Let (Λ, ϕ) be a symmetric R-algebra, and let ρ be the character of the left regular module ${}_AA$. The order of (Λ, ϕ) is defined to be $\phi^{-1}(\rho)$.

Remarks. (1) If $G = \{g_1, g_2, \dots, g_n\}$ is a finite group, then RG is a symmetric algebra with respect to an isomorphism ϕ such that $(g_i), (g_i^{-1})$ are dual bases with respect to ϕ . In this case the order of (RG, ϕ) is $\sum_i g_i g_i^{-1} = n$, the order of G. It is this fact that motivates the general definition.

(2) If Λ is a symmetric algebra with two Λ^e -isomorphisms $\phi_1, \phi_2 \colon \Lambda \to \Lambda^*$, one can show that $\phi_1^{-1}(\rho)$ is a multiple of $\phi_2^{-1}(\rho)$ by a unit in the center Δ of Λ . Therefore the ideals of Δ generated by the orders of (Λ, ϕ_1) and (Λ, ϕ_2) are equal.

If L is a finitely generated R-submodule of A such that KL = A, set $L^{\phi} = \{a \in A: \phi(1)(aL) \subseteq R\}$. Then $L \to L^{\phi}$ reverses strict inclusions, and $(L^{\phi})^{\phi} = L$. Since $\phi: \Lambda \to \Lambda^* = \operatorname{Hom}_R(\Lambda, R)$ is an isomorphism, one checks that $\Lambda^{\phi} = \Lambda$. Now if Γ is any order containing Λ , then $\Lambda^{\phi}\Gamma = \Gamma$ is the smallest right Γ -lattice containing Λ^{ϕ} , so Γ^{ϕ} is the largest left Γ -lattice contained in Λ ; that is, $\Gamma^{\phi} = (\Lambda: \Gamma)_{\mathbf{A}}$. Since $\phi(1)(xa) = \phi(1)(ax)$ for all $x, a \in A$ (see [4, Theorem 1.3]), it follows that Γ^{ϕ} is a two-sided ideal of Γ contained in Λ .

Now assume that Γ is a maximal R-order containing Λ , and as before let c denote the order of (Λ, ϕ) . Since Γ is maximal, we have a decomposition $\Gamma = \Gamma_1 + \cdots + \Gamma_r$, where each Γ_j is a maximal order in A_j . Note also that R_j is the center of Γ_j for each j. Now $\rho = \sum_j n_j S_j$, so it follows easily that

 $\{a \in A : \rho(a\Gamma) \subseteq R\} = \sum_j (1/n_j) d_{S_j}^{-1}(\Gamma_j)$, where we use the notation of [7, Chapter V, §1] by writing $d_{S_j}^{-1}(\Gamma_j) = \{a \in A_j : S_j(a\Gamma_j) \subseteq R\}$. Similarly define $d_{U_j}^{-1}(\Gamma_j)$ and $d_{T_j}^{-1}(R_j)$.

Now $\phi(1) = c^{-1}\phi(c) = c^{-1}\rho$, so $(\Lambda : \Gamma)_{\Lambda} = \Gamma^{\phi} = \{a \in A : \phi(1)(a\Gamma) \subseteq R\} = \{a \in A : (c^{-1}\rho)(a\Gamma) \subseteq R\} = c\{a \in A : \rho(a\Gamma) \subseteq R\} = \sum_{j} (c/n_{j})d_{S_{j}}^{-1}(\Gamma_{j})$, by the above paragraph. From the equalities $d_{S_{j}}^{-1}(\Gamma_{j}) = d_{U_{j}}^{-1}(\Gamma_{j})d_{T_{j}}^{-1}(R_{j})$, we have the following:

Lemma 2.2. Let Γ be a maximal order containing Λ . If (Λ, ϕ) is a symmetric R-algebra of order c, then

$$(\Lambda : \Gamma)_{\Lambda} = \sum_{j} (c/n_{j}) d_{U_{j}}^{-1}(\Gamma_{j}) d_{T_{j}}^{-1}(R_{j}),$$

and

$$(\Lambda : \Gamma)_{\Lambda} \Gamma = (\Lambda : \Gamma)_{\Lambda}.$$

Since K is an algebraic number field, $d_{U_j}^{-1}(\Gamma_j) \cap K_j = R_j$ for each j (see [7, p. 270]). From this, together with our observation that $\Gamma^{\phi} = (\Lambda : \Gamma)_{\Lambda}$ is a two-sided ideal of Γ , we apply Proposition 2.1 to obtain a characterization of $J_{\Delta}(\Lambda)$ for symmetric algebras (compare Jacobinski [5] and Roggenkamp [6]).

Theorem 2.3. Let (Λ, ϕ) be a symmetric R-algebra of order c. Then $J_{\Delta}(\Lambda) = \sum_{i} (c/n_{i}) d_{T_{i}}^{-1}(R_{i})$. Furthermore, if e is a central idempotent of A, then

$$eJ_{\Delta}(\Lambda) = \sum_{e_i e = e_j} (c/n_j) d_{T_j}^{-1}(R_j),$$

and

$$J_{R}(\Lambda, e) = \bigcap_{e_{i}e=e_{i}} \{(c/n_{i})d_{T_{i}}^{-1}(R_{i}) \cap K\}.$$

This theorem has an obvious interpretation for group algebras. In particular, assume R is a discrete valuation ring (DVR) with maximal ideal πR , and let G be a finite group of order n. Then n is also the order of the symmetric algebra RG. Assume that K is a splitting field for KG = A. Let e be a block idempotent of RG, and write $e = e_1 + \cdots + e_s$ as a sum of block idempotents of A. For each i, let d_i be the nonnegative integer such that $\pi^{d_i}R = (n/n_i)R$, where n_i^2 is the degree of e_iA over its center K. Set $d = \max\{d_i: 1 \le i \le s\}$. Since K is a splitting field for A, each $R_i = R$ (in the notation of this section), so by the above theorem, $I_R(RG, e) = \bigcap_i \pi^{d_i}R = \pi^dR$. Note that d is the defect of the block idempotent e of RG as defined in Curtis and Reiner [2, §86].

3. A generalization of the homological different. In this section we define certain ideals of Δ which are related to the homological different, and which

bear close resemblance to the ideals $J_{\Delta}(\Lambda, e)$ studied in the previous sections. Notation and assumptions of the previous sections will be retained. Recall that Λ is defined to be a separable R-algebra if Λ is a projective Λ^e -module. The reader is directed to Auslander and Goldman [1] for pertinent facts about separability.

The multiplication map $\epsilon \colon \Lambda^e \to \Lambda$ induces the map $\epsilon_* \colon \operatorname{Hom}_{\Lambda^e}(\Lambda, \Lambda^e) \to \Delta$ by $\epsilon_*(f) = \epsilon f(1)$, and the image $H_{\Delta}(\Lambda)$ of ϵ_* is called the *homological different* of Λ . It is easy to show that $H_{\Delta}(\Lambda) = \operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \underline{\ }))$, and $H_{\Delta}(\Lambda) \subseteq J_{\Delta}(\Lambda)$.

Definition. Let e be a central idempotent of A. Define $M_{\Delta}(\Lambda, e) = \bigcap_{\Lambda \subseteq \Gamma} \{ \operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda e}^{1}(e\Gamma, \bot)) \}$, where the intersection is taken over all R-orders Γ containing Λ . Set $M_{\Delta}(\Lambda) = M_{\Delta}(\Lambda, 1)$, and $M_{R}(\Lambda, e) = M_{\Delta}(\Lambda, e) \cap R$.

It is clear from the definition that $M_{\Delta}(\Lambda) \subseteq H_{\Delta}(\Lambda)$. Since separable orders are maximal [1, Proposition 7.1], it follows that $M_{\Delta}(\Lambda) = \Delta$ if and only if Λ is separable over R.

We have an obvious analogue to Theorem 1.2.

Theorem 3.1. Let e be a central idempotent of A. Then $M_{\Delta}(\Lambda, e) = \{z \in \Delta: ze \in M_{\Delta}(\Lambda)\}.$

Proof. To show the inclusion \supseteq , assume $z \in \Delta$ and $ze \in M_{\Delta}(\Lambda)$. Let Γ be an R-order containing Λ , and set $\Gamma_0 = e\Gamma + (1-e)\Gamma$. Then Γ_0 is an R-order containing Λ such that $e\Gamma_0 = e\Gamma$. Since $\operatorname{Ext}^1_{\Lambda e}(\Gamma_0, \bot) \cong \operatorname{Ext}^1_{\Lambda e}(e\Gamma, \bot) \oplus \operatorname{Ext}^1_{\Lambda e}((1-e)\Gamma, \bot)$, we see that $\operatorname{Ann}_{\Delta}(\operatorname{Ext}^1_{\Lambda e}(e\Gamma, \bot)) \supseteq \operatorname{Ann}_{\Delta}(\operatorname{Ext}^1_{\Lambda e}(\Gamma_0, \bot)) \supseteq M_{\Delta}(\Lambda)$, hence $ze \in \operatorname{Ann}_{\Delta}(\operatorname{Ext}^1_{\Lambda e}(e\Gamma, \bot))$. Now the left multiplications λ_z and λ_{ze} on $e\Gamma$ are identical, so $z \in \operatorname{Ann}_{\Delta}(\operatorname{Ext}^1_{\Lambda e}(e\Gamma, \bot))$. Thus $z \in M_{\Delta}(\Lambda, e)$.

For the inclusion \subseteq , fix $z \in M_{\Delta}(\Lambda, e)$. Then the left multiplication λ_z on $e\Lambda$ is projective, so essentially from Lemma 1.3 we see that $ze = \lambda_z(e) \in \Delta$. The remainder of the proof now parallels that of Theorem 1.2.

Corollary 3.2. Let e be a central idempotent of A. Then $eM_{\Delta}(\Lambda) = eM_{\Delta}(\Lambda, e)$ $\subseteq M_{\Delta}(\Lambda)$.

Proof. Copy the proof of Corollary 1.5.

We proceed to give an explicit computation of $M_{\Delta}(\Lambda)$ in case Λ is a symmetric algebra.

Now R is a Dedekind domain, so Λ is finitely generated and projective over R, and the map $\gamma \colon \Lambda^e \to \operatorname{Hom}_R(\Lambda^*, \Lambda)$ given by $\gamma(a \otimes b)(f) = af(b)$, for $a \otimes b \in \Lambda^e$, and for all $f \in \Lambda^* = \operatorname{Hom}_R(\Lambda, R)$, is a (Λ^e, Λ^e) -bimodule isomorphism. Here $\operatorname{Hom}_R(\Lambda^*, \Lambda)$ is a (Λ^e, Λ^e) -bimodule by defining $[(a \otimes b)\theta](f) = a\theta(bf)$ and $[\theta(a \otimes b)](f) = \theta(fb)a$, where $a \otimes b \in \Lambda^e$, $\theta \in \operatorname{Hom}_R(\Lambda^*, \Lambda)$, and $f \in \Lambda^*$.

Let Γ be an R-order containing Λ , and consider the obvious Λ^e -homomorphism $\Lambda \to \Gamma$ given by inclusion. We obtain the commutative diagram

where $\sigma^{\Gamma}(f) = f \otimes 1$, τ^{Γ} is induced from $\Lambda \to \Gamma$, ϵ_*^{Γ} is induced from the multiplication $\epsilon \colon \Lambda^e \to \Lambda$, and $[\mu^{\Gamma}(f \otimes x)](y) = f(y)x$. Note that τ^{Γ} is one-to-one.

Lemma 3.3 (Roggenkamp [6]). The image of μ^{Γ} is the set of all projective Λ^e -endomorphisms of Γ .

We may regard $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$ as a right Λ^e -submodule of the right Λ^e -module $\operatorname{Hom}_{\Lambda^e}(A, \Lambda^e)$. Since $\Gamma \to \Lambda^e$ given by $x \to x \otimes 1$ is a ring homomorphism, $\operatorname{Hom}_{\Lambda^e}(A, \Lambda^e)$ becomes a right Γ -module.

Lemma 3.4. Let Γ be an R-order containing Λ . If $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e) \Gamma \subseteq \operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$, then the restriction τ_0^{Γ} : $\operatorname{Im}(\epsilon_*^{\Gamma}) \to \operatorname{Im}(\mu^{\Gamma})$ of τ^{Γ} to $\operatorname{Im}(\epsilon_*^{\Gamma})$ is an isomorphism.

Proof. It is clear that τ^{Γ} , and therefore τ_0^{Γ} , is one-to-one. The commutativity of the above diagram shows that τ_0^{Γ} maps into $\operatorname{Im}(\mu^{\Gamma})$; thus we only need to show that it is onto. Let $f \in \operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$ and $x \in \Gamma$. Choose $0 \neq r \in R$ such that $rx \in \Lambda$. Then $r(f \otimes x) = f \otimes rx = f \otimes (rx \otimes 1)1 = f(rx \otimes 1) \otimes 1 = frx \otimes 1$ in $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e) \otimes_{\Lambda^e} \Gamma$. Since $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e) \cap \Gamma \subseteq \operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$, we have that $fx \in \operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$, and so from above $r(f \otimes x) = r(fx \otimes 1)$ in $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e) \otimes_{\Lambda^e} \Gamma$. Therefore $\tau \mu^{\Gamma}(f \otimes x) = \tau \mu^{\Gamma}(fx \otimes 1)$, and since $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Gamma)$ is R-torsion free, $\mu^{\Gamma}(f \otimes x) = \mu^{\Gamma}(fx \otimes 1) = \mu^{\Gamma}\sigma^{\Gamma}(fx) = \tau_0^{\Gamma}\Gamma(fx)$. It follows that τ_0^{Γ} is onto, as desired. Remarks. (1) The hypotheses of the above lemma are clearly satisfied if $\Lambda = \Gamma$.

(2) The function $\operatorname{Hom}_{\Lambda^e}(\Gamma,\Lambda) \to (\Lambda:\Gamma)_{\Delta}$ given by $g \to g(1)$ is an isomorphism, which we will regard as an identification; thus $\operatorname{Im}(\epsilon_*^{\Gamma}) \subseteq (\Lambda:\Gamma)_{\Delta}$.

Lemma 3.5. Let Γ be an R-order containing Λ . Assume (Λ, ϕ) is a symmetric R-algebra, and let (a_i) , (b_i) be dual bases of Λ with respect to ϕ . Then $\theta^{\Gamma}: (\Lambda:\Gamma)_{\Lambda} \to \operatorname{Hom}_{\Lambda e}(\Gamma, \Lambda^e)$ defined by $\theta^{\Gamma}(a)(x) = \sum_i xb_ia \otimes a_i$ is a right Λ^e -isomorphism. In particular, $\operatorname{Hom}_{\Lambda e}(\Gamma, \Lambda^e)\Gamma \subseteq \operatorname{Hom}_{\Lambda e}(\Gamma, \Lambda^e)$.

Proof. Define $\psi\colon \operatorname{Hom}_{\Lambda^e}(\Gamma,\Lambda^e)\to (\Lambda\colon\Gamma)_{\Lambda}$ by $\psi(f)=[\gamma(f(1))](\phi(1))$, where $\gamma\colon \Lambda^e\to \operatorname{Hom}_R(\Lambda^*,\Lambda)$ is the isomorphism defined after Corollary 3.2. It is relatively routine to check that ψ is the inverse of θ^Γ , which shows that θ^Γ is an isomorphism. Now by Lemma 2.2, $(\Lambda\colon\Gamma)_{\Lambda}\Gamma\subseteq (\Lambda\colon\Gamma)_{\Lambda}$, so it follows that $\operatorname{Hom}_{\Lambda^e}(\Gamma,\Lambda^e)\Gamma\subseteq \operatorname{Hom}_{\Lambda^e}(\Gamma,\Lambda^e)$, as desired.

Let us continue to assume the hypotheses of Lemma 3.5. Now ϵ_*^{Γ} : $\operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e) \to (\Lambda:\Gamma)_{\Delta}$ is given by $\epsilon_*^{\Gamma}(g) = \epsilon g(1)$. By the lemma, $\theta^{\Gamma}: (\Lambda:\Gamma)_{\Delta} \to \operatorname{Hom}_{\Lambda^e}(\Gamma, \Lambda^e)$ is given by $\theta^{\Gamma}(a)(x) = \sum_i x b_i a \otimes a_i$, so for any $a \in (\Lambda:\Gamma)_{\Delta}$, $\epsilon_*^{\Gamma}(\theta^{\Gamma}(a)) = \epsilon[\theta^{\Gamma}(a)(1)] = \sum_i b_i a a_i$. (Observe that $\epsilon_*^{\Gamma}\theta^{\Gamma}$ coincides with the Gaschütz-Ikeda operator [2, §71].) Since θ^{Γ} is an isomorphism, $\operatorname{Im}(\epsilon_*^{\Gamma}\theta^{\Gamma}) = \operatorname{Im}(\epsilon_*^{\Gamma}) \cong \operatorname{Im}(\mu^{\Gamma})$, by Lemmas 3.5 and 3.4. It is now easy to see that, for any $z \in \Delta$, the left multiplication λ_z on Γ is a projective Λ^e -endomorphism if and only if $z \in \operatorname{Im}(\epsilon_*^{\Gamma}) = \operatorname{Im}(\epsilon_*^{\Gamma}\theta^{\Gamma})$, that is, if and only if $z = \sum_i b_i a a_i$ for some $a \in (\Lambda:\Gamma)_{\Lambda}$. We therefore have

Lemma 3.6. Let Γ be an R-order containing Λ , and let (Λ, ϕ) be a symmetric R-algebra with dual bases (a_i) , (b_i) for Λ with respect to ϕ . Then

$$\operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda e}^{1}(\Gamma, -)) = \left\{ \sum_{i} b_{i} a a_{i} : a \in (\Lambda; \Gamma)_{\Lambda} \right\}.$$

Corollary 3.7. If (Λ, ϕ) is a symmetric R-algebra, then $M_{\Delta}(\Lambda) = \bigcap_{\Lambda \subseteq \Gamma} \{ \operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda e}^{1}(\Gamma, _)) \}$, where the intersection is over all maximal R-orders containing Λ .

Proof. If Γ , Γ' are R-orders such that $\Lambda \subseteq \Gamma \subseteq \Gamma'$, then plainly $(\Lambda : \Gamma')_{\Lambda} \subseteq (\Lambda : \Gamma)_{\Lambda}$. By the above lemma, $\operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda^e}^1(\Gamma', _)) \subseteq \operatorname{Ann}_{\Delta}(\operatorname{Ext}_{\Lambda^e}^1(\Gamma, _))$. The corollary now follows directly from the definition of $M_{\Delta}(\Lambda)$.

Lemma 3.8. Let (Λ, ϕ) be a symmetric algebra of order c, and let (a_i) , (b_i) be dual bases for A with respect to ϕ . Then for any $a \in A$, $\sum_i b_i a a_i = \sum_j (c/n_j) U_j(a)$.

Proof. Fix $a \in A$, and write $\sum_i b_i a a_i = \sum_k \alpha_k$, where each $\alpha_k \in K_k$, the center of A_k . By the discussion following Proposition 2.1, we have that $c = \sum_i a_i b_i$, and c belongs to Δ . Therefore for any j, $cU_j(a) = U_j(ca) = U_j(\sum_i a_i b_i a) = U_j(\sum_i b_i a a_i) = U_j(\sum_k \alpha_k) = U_j(\alpha_j) = \alpha_j n_j$. By dividing by n_j , this implies that $\alpha_j = (c/n_j)U_j(a)$, as desired.

Now let Γ be a maximal R-order containing Λ , and assume that (Λ, ϕ) is a symmetric R-algebra of order c, with dual bases (a_i) , (b_i) of A with respect to ϕ . By Lemma 2.2, $(\Lambda:\Gamma)_{\Lambda} = \sum_j (c/n_j) d_{U_j}^{-1}(\Gamma_j) d_{T_j}^{-1}(R_j)$. Recall that $\epsilon_*^{\Gamma} \theta^{\Gamma}$: $a \to \sum_i b_i a a_i = \sum_j (c/n_j) U_j(a)$ as above. It follows that the image of $(\Lambda:\Gamma)_{\Lambda}$ under $\epsilon_*^{\Gamma} \theta^{\Gamma}$ is

$$\sum_{j} (c/n_{j})^{2} d_{T_{j}}^{-1}(R_{j}) U_{j}(d_{U_{j}}^{-1}(\Gamma_{j})).$$

Since R is a Dedekind domain, it is easy to see that $U_j(d_{U_i}^{-1}(\Gamma_j)) = R_j$. Therefore

$$\operatorname{Im}(\epsilon_*^{\Gamma}\theta^{\Gamma}) = \sum_{j} (c/n_j)^2 d_{T_j}^{-1}(R_j).$$

Observe that this expression is independent of the maximal order Γ . We can now apply Lemma 3.6 and Corollary 3.7 to obtain the following characterization of $M_{\Lambda}(\Lambda)$.

Theorem 3.9. Let (Λ, ϕ) be a symmetric R-algebra of order c. Then $M_{\Delta}(\Lambda) = \sum_{i} (c/n_{i})^{2} d_{T,i}^{-1}(R_{i})$. Furthermore, if e is a central idempotent in A, then

$$eM_{\Delta}(\Lambda) = \sum_{e_{j}e=e_{j}} (c/n_{j})^{2} d_{T_{j}}^{-1}(R_{j}),$$

and

$$M_{R}(\Lambda, e) = \bigcap_{\substack{e_{j}e=e_{j}\\ }} \{(c/n_{j})^{2}d_{T_{j}}^{-1}(R_{j}) \cap K\}.$$

We can use this characterization of $M_{\Delta}(\Lambda)$ to give the following theorem about separability:

Theorem 3.10. Let e be a central idempotent of A. Then the following statements are equivalent:

- (a) $e \in \Lambda$ and $e\Lambda$ is separable over R,
- (b) $e\Lambda$ is a projective Λ^e -module,
- (c) $M_{\Lambda}(\Lambda, e) = \Delta$.

If in addition, (Λ, ϕ) is a symmetric algebra of order c, then these are equivalent to the following statement:

(d) (c/n_i) is a unit in R_i for each j such that $e_i e = e_i$.

Proof. The proof of the equivalence of (a), (b) and (c) is left to the reader. Now assume (a), (b) and (c). Then $e\Lambda$ is a maximal R-order by [1, Proposition 7.1], and so R_j is the center of $e_j\Lambda$ for each j such that $e_je_j=e_j$. Since each $e_j\Lambda$ is R-separable, it follows that R_j is R-separable [1, Theorem 2.3], and one can check in this case that $d_{T_j}^{-1}(R_j)=R_j$. By Theorem 3.9, $e\Delta=eM_\Delta(\Lambda,e)=\sum_{e_je_j=e_j}(c/n_j)^2R_j$, and it follows that (c/n_j) is a unit in R_j for each j such that $e_je_j=e_j$. This proves (d). Now assume (d). Fix a j such that $e_je_j=e_j$, so that (c/n_j) is a unit in R_j ; since $(c/n_j)^2d_{T_j}^{-1}(R_j)$ is an ideal in the domain R_j and (c/n_j) is a unit, it follows that $(c/n_j)R_j=d_{T_j}^{-1}(R_j)=R_j$. Therefore $M_R(\Lambda,e)=R$, and so $1\in M_R(\Lambda,e)$. Thus $1\in M_\Delta(\Lambda,e)$, and so $M_\Delta(\Lambda,e)=\Delta$, which shows that (d) implies (c). This completes the proof of the theorem.

We conclude this section with an explicit computation of $M_R(\Lambda)$ when Λ is the group algebra RG of a finite group G.

Proposition 3.11. Let G be a finite group of order n. Then $M_R(RG) = n^2 R$.

Proof. We have already observed that RG is a symmetric algebra of order n. It is clear from Theorem 3.9, that $M_R(RG) \supseteq n^2 R$. If e_1 is the block idempotent of

KG corresponding to the KG-module K with trivial G-action, then $n_1 = 1$ and $R_1 = R$. Therefore $(n/n_1)^2 d_{T_1}^{-1}(R_1) \cap K = n^2 R$. Theorem 3.9 now implies that $M_P(RG) \subseteq n^2 R$, and the corollary follows.

4. A characterization of separable orders. Assume, as in the previous sections, that R is a Dedekind domain with quotient field K, and that Λ is an R-order in the separable K-algebra A. If p is a maximal ideal of R, let R_p denote the localization of R at p. Similarly set $\Lambda_p = R_p \otimes_R \Lambda$. The main theorem of this section is the following characterization of separable orders.

Theorem 4.1. The R-order Λ is separable over R if and only if the following statements hold:

- (1) the center $Z(\Lambda)$ of Λ is separable over R,
- (2) Λ is a symmetric R-algebra,
- (3) the natural map $Z(\Lambda_p) \to Z(\Lambda_p/p\Lambda_p)$ is onto for each maximal ideal p of R.

Proof. Assume first that Λ is separable over R. We have already observed that $Z(\Lambda)$ is separable over R, so (1) is established. Endo and Watanabe [3] have shown that Λ is a symmetric algebra, which proves (2). Now (3) follows immediately from the following.

Proposition 4.2. For any R-order Λ in A, $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda)=0$ if and only if the natural map $Z(\Lambda_p) \to Z(\Lambda_p/p\Lambda_p)$ is onto for each maximal ideal p of R.

Proof. Consider first the case where R is a DVR with maximal ideal πR , and set $\Lambda = \Lambda/\pi\Lambda$. By applying the functor $\operatorname{Hom}_{\Lambda^e}(\Lambda, \bot)$ to the exact sequence $0 \to \Lambda \xrightarrow{\pi} \Lambda \to \overline{\Lambda} \to 0$ of left Λ^e -modules, we see that $Z(\Lambda) \to Z(\overline{\Lambda}) \to \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \xrightarrow{\pi} \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda)$ is exact, where π is used here to denote multiplication. Now if $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) = 0$, it is clear that $Z(\Lambda) \to Z(\overline{\Lambda})$ is onto. Conversely, if $Z(\Lambda) \to Z(\overline{\Lambda})$ is onto, then $0 \to \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \xrightarrow{\pi} \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda)$ is exact; but this surely implies that $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) = 0$, since otherwise multiplication by π on the torsion R-module $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda)$ would not be one-to-one.

For the general case, we need only observe that $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \cong \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \cong \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \cong \operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) = \operatorname{$

For the general case, we need only observe that $\operatorname{Ext}_{\Lambda^e}^1(\Lambda, \Lambda) \cong \bigoplus_p \operatorname{Ext}_{\Lambda^e_p}^1(\Lambda_p, \Lambda_p)$, where the sum is over all maximal ideals p of R. This concludes the proof of the proposition.

Returning now to the proof of Theorem 4.1, assume that conditions (1), (2), and (3) hold. We must show that Λ is separable over R. By [1, Corollary 4.5], it is sufficient to show that Λ_p is separable over R_p for each maximal ideal p of R. We leave it to the reader to verify that conditions (1) and (2) imply their local versions. We may therefore assume that R is a DVR with maximal ideal

 πR , $Z(\Lambda)$ is separable over R, Λ is a symmetric R-algebra, and the natural map $Z(\Lambda) \to Z(\Lambda/\pi\Lambda)$ is onto. It is easy to see that $\overline{\Lambda}$ is a symmetric \overline{R} -algebra, where $\overline{R} = R/\pi R$ and $\overline{\Lambda} = \Lambda/\pi\Lambda$. Since $Z(\Lambda) \to Z(\overline{\Lambda})$ is onto, [1, Theorem 4.7] implies that $Z(\overline{\Lambda})$ is separable over the field \overline{R} . To show that Λ is separable over R, by [1, Theorem 4.7] it suffices to show that $\overline{\Lambda}$ is separable over \overline{R} . The proof is complete by establishing the following.

Theorem 4.3. Let F be a field and let B be a symmetric F-algebra. Then B is semisimple if and only if its center Z(B) is semisimple. Moreover, B is separable over F if and only if its center Z(B) is separable over F.

Proof. If B is semisimple, so is Z(B). So assume conversely that Z(B) is semisimple, and let I denote the radical of B. Then $I \cap Z(B) = 0$. By applying $\operatorname{Hom}_{\operatorname{Re}}(B, \underline{\ })$ to the exact sequence $0 \to J \to B \to B/J \to 0$ of left B^e -modules, we see that $0 \to J \cap Z(B) \to Z(B) \to Z(B/J)$ is exact. Since $J \cap Z(B) = 0$, the map $Z(B) \rightarrow Z(B/J)$ is one-to-one. Now dualize with respect to F by applying $\operatorname{Hom}_F(_,F)=(_)^*$ to obtain the exact sequence $0\to (B/J)^*\to B^*\to J^*\to 0$ of left B^e -modules. Now B/J is semisimple, so B/J is a symmetric F-algebra. It follows that $(B/I)^* \cong B/I$ as left B^e -modules, and $B^* \cong B$ as left B^e -modules by assumption. Thus we have an exact sequence $0 \rightarrow B/J \rightarrow B$. Again applying $\operatorname{Hom}_{Re}(B, _)$ we have that $0 \to Z(B/J) \to Z(B)$ is exact. It follows by counting dimensions, using the previously established monomorphism $Z(B) \to Z(B/J)$, that $Z(B/J) \rightarrow Z(B)$ is onto. Hence 1 is in the image of $B/J \rightarrow B$. Since this image is an ideal of B, the map $B/J \rightarrow B$ is an epimorphism. This is impossible unless J = 0, by counting dimensions. Hence B is semisimple. The remainder of the theorem now follows from the characterization of a separable F-algebra as an F-algebra which is semisimple and whose center is separable over F.

Corollary 4.4. Let A be a central simple K-algebra. Then Λ is separable over R if and only if the following statements hold:

- (1) Λ is a symmetric R-algebra,
- (2) the natural map $Z(\Lambda_p) \to Z(\Lambda_p/p\Lambda_p)$ is onto for each maximal ideal p of R.

Corollary 4.5. Let e be a central idempotent of Λ , and assume Λ is a symmetric R-algebra such that the natural map $Z(\Lambda_p) \to Z(\Lambda_p/p\Lambda_p)$ is onto for each maximal ideal p of R. If K is a splitting field for eA, then the following statements are equivalent:

- (a) eA is separable over R.
- (a') $M_{\Lambda}(\Lambda, e) = \Delta$.
- (b) $e\Lambda$ is hereditary.
- (b') $J_{\Lambda}(\Lambda, e) = \Delta$.
- (c) $e_j \in \Lambda$ for all block idempotents e_j of Λ such that $e_j e = e_j$.

Proof. The equivalences (a) \Leftrightarrow (a') and (b) \Leftrightarrow (b') are routine. Clearly (a) implies (b), and (b) implies (c) by Corollary 1.4. We will prove that (c) implies (a). Let e_j be a block idempotent of A such that $e_j e = e_j$. Then $e_j \in \Lambda$, and $e_j A$ is K-central simple because K is a splitting field for eA. One checks that hypotheses (1) and (2) of Corollary 4.4 are satisfied by $e_j \Lambda$, since $e_j \in \Lambda$, and so $e_j \Lambda$ is separable over R. Since e is the sum of those block idempotents e_j of A such that $e_j e = e_j$, if follows that $e \Lambda$ is separable over R, completing the proof.

Observe that the above hypotheses are satisfied if Λ is the group algebra RG of a finite group G, and if K is a splitting field for KG. The corollary is false if K is not a splitting field: For example, $\mathbb{Z}[i]$ is a commutative, symmetric \mathbb{Z} -order in the simple \mathbb{Q} -algebra $\mathbb{Q}[i]$, where $i^2 = -1$, so (c) is clearly satisfied in the above corollary (with e = 1), but $\mathbb{Z}[i]$ is not separable over \mathbb{Z} .

Examples. (1) Let R be a DVR with maximal ideal πR and quotient field K, and let Λ be the set of all matrices of the form

$$\begin{pmatrix} a & \pi b \\ c & d \end{pmatrix}$$

for $a, b, c, d \in R$. Then Λ is a hereditary order in the central simple algebra $(K)_2$ of two-by-two matrices over K, but Λ is not maximal, hence it is not separable over R. One can check that $\overline{\Lambda} = \Lambda/\pi\Lambda$ is not a symmetric algebra (it is a Frobenius algebra), but $Z(\Lambda) \to Z(\overline{\Lambda})$ is onto. This shows that the hypothesis that Λ be symmetric cannot be deleted from Corollary 4.4.

(2) Now let $R = \mathbb{Z}_{(2)}$, the localization of the ring \mathbb{Z} of integers at the maximal ideal (2), and let Λ be the R-algebra freely generated by $\{1, a, b, c\}$, subject to the following multiplication:

One can check that Λ is a twisted group algebra over R of the Klein four-group G, with the obvious factor set. It follows that Λ is a symmetric algebra. Moreover, if K denotes the rational field, so that K is the quotient field of R, then $K \otimes_R \Lambda = A$ is a K-central simple algebra. Now the residue class algebra $\overline{\Lambda} = \Lambda/2\Lambda$ is the ordinary group algebra $\overline{R}G$ over $\overline{R} \cong \mathbb{Z}/(2)$, so $\overline{\Lambda}$ is not semisimple.

314 T. V. FOSSUM

Hence Λ is not separable over R. It is obvious that Λ is noncommutative while $\overline{\Lambda}$ is commutative, so $Z(\Lambda) \to Z(\overline{\Lambda})$ is not onto. This shows that condition (2) of Corollary 4.4 cannot be deleted.

Using [3], the proof of Theorem 4.1 may be modified to apply in case Λ is a finitely generated projective faithful algebra over an arbitrary commutative ring R.

REFERENCES

- 1. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519.
- 3. S. Endo and Y. Watanabe, On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242. MR 37 #2796.
- 4. T. V. Fossum, Characters and centers of symmetric algebras, J. Algebra 16 (1970), 4-13. MR 41 #6894.
- 5. H. Jacobinski, On extensions of lattices, Michigan Math. J. 13 (1966), 471-475. MR 34 #4377.
- 6. K. W. Roggenkamp, Projective homomorphisms and extensions of lattices, J. Reine Angew. Math. 246 (1971), 41-45. MR 43 #248.
- 7. K. W. Roggenkamp and V. Huber-Dyson, Lattices over orders, l, Lecture Notes in Math., vol. 115, Springer-Verlag, New York, 1970.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

Current address: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112